Numerical Aspects of Large-time Optimal Control of Burgers Equation

نویسنده

  • N. ALLAHVERDI
چکیده

In this paper, we discuss the efficiency of various numerical methods for the inverse design of the Burgers equation, both in the viscous and in the inviscid case, in long time-horizons. Roughly, the problem consists in, given a final desired target, to identify the initial datum that leads to it along the Burgers dynamics. This constitutes an ill-posed backward problem. We highlight the importance of employing a proper discretization scheme in the numerical approximation of the equation under consideration to obtain an accurate approximation of the optimal control problem. Convergence in the classical sense of numerical analysis does not suffice since numerical schemes can alter the dynamics of the underlying continuous system in long time intervals. As we shall see, this may end up affecting the efficiency on the numerical approximation of the inverse design, that could be polluted by spurious high frequency numerical oscillations. To illustrate this, two well-known numerical schemes are employed: the modified Lax-Friedrichs scheme (MLF) and the Engquist-Osher (EO) one. It is by now well-known that the MLF scheme, as time tends to infinity, leads to asymptotic profiles with an excess of viscosity, while EO captures the correct asymptotic dynamics. We solve the inverse design problem by means of a gradient descent method and show that EO performs robustly, reaching efficiently a good approximation of the minimizer, while MLF shows a very strong sensitivity to the selection of cell and time-step sizes, due to excess of numerical viscosity. The achieved numerical results are confirmed by numerical experiments run with the open source nonlinear optimization package (IPOPT).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact ‎solution

The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...

متن کامل

Nonlinear Control of the Viscous Burgers Equation: Trajectory Generation, Tracking, and Observer Design

In a companion paper we have solved the basic problem of full-state stabilization of unstable “shock-like” equilibrium profiles of the viscous Burgers equation with actuation at the boundaries. In this paper we consider several advanced problems for this nonlinear partial differential equation (PDE) system. We start with the problems of trajectory generation and tracking. Our algorithm is appli...

متن کامل

Optimal Control for Burgers Flow Using the Discontinuous Galerkin Method

The coupling of accurate computational fluid dynamics analysis with optimal control theory has the potential to advance active flow-control for complex fluid systems. In this paper, an optimal control framework for the viscous Burgers equation is constructed based on the Discontinuous Galerkin Method (DGM). A DGM discretization has several potential advantages for optimization studies including...

متن کامل

Electro-magneto-hydrodynamics Flows of Burgers' Fluids in Cylindrical Domains with Time Exponential Memory

This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model used in this work is based on a time-nonlocal constitutive equation for s...

متن کامل

Numerical solution of non-planar Burgers equation by Haar wavelet method

In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve the non-planar Burgers equation. The quasilinearization technique is used to conveniently handle the nonlinear terms in the non-planar Burgers equation. The basic idea of Haar wavelet collocation method is to convert the partial differential equation into a system of algebraic equations that involves a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014